性做久久久久久坡多野结衣-性做久久久久久久久浪潮-性欲影院-性影院-国产精品线路一线路二-国产精品兄妹在线观看麻豆

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>解決方案>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

當(dāng)四川微辣=廣東暴辣…高光譜相機(jī)給辣度“上秤“

來源:愛博能(廣州)科學(xué)技術(shù)有限公司   2025年08月11日 18:07  

When "Mild Spicy" in Sichuan Equals "Extremely Spicy" in Guangdong... Hyperspectral Camera Measures Chili Heat Levels


每個(gè)人對辣度的接受程度都不一樣,火鍋底料的辣度如何科學(xué)量化?本次實(shí)驗(yàn)利用高光譜相機(jī),對6種不同辣度的火鍋底料進(jìn)行測試,探索光譜數(shù)據(jù)與辣度的關(guān)聯(lián)性。

People's tolerance for spiciness varies widely, but how can the heat level of hot pot base be scientifically quantified? This experiment utilized a hyperspectral camera to test six hot pot bases with different spiciness levels, exploring the correlation between spectral data and chili heat intensity.


「樣品介紹 / Samples」

測試6種不同辣度的火鍋底料,辣度分別為:12°、36°、45°、52°、65°、75°

Six hot pot base samples with varying heat levels were tested: 12°, 36°, 45°, 52°, 65°, and 75°.

火鍋2.png


火鍋1.jpg


「數(shù)據(jù)采集 / Data Acquisition」

高光譜相機(jī):覆蓋400~1700nm波段(可見光+短波紅外)

成像方式:線性推掃,確保數(shù)據(jù)精準(zhǔn)

光源與環(huán)境:鹵素?zé)艟鶆蛘彰鳎凳噎h(huán)境減少干擾

樣品擺放:水平位移臺固定,保證成像穩(wěn)定

Hyperspectral Camera: Covered 400–1700 nm (visible light + short-wave infrared).

Imaging Method: Linear push-broom scanning for precise data capture.

Lighting & Environment: Halogen lamp for uniform illumination, darkroom to minimize interference.

Sample Setup: Fixed on a horizontal displacement platform for stable imaging.

火鍋3.png

火鍋4.png

400-1000nm

火鍋5.jpg

900-1700nm


「分析方法 / Analysis Method」

高光譜成像不僅能拍出照片,還能記錄每個(gè)像素點(diǎn)的光譜“指紋”。 

實(shí)驗(yàn)過程中,首先使用400-1000nm可見近紅外和900-1700nm短波紅外兩臺高光譜相機(jī)采集6種火鍋底料樣品的光譜數(shù)據(jù)。

在數(shù)據(jù)預(yù)處理階段,通過專業(yè)的高光譜分析軟件對原始數(shù)據(jù)進(jìn)行降噪處理和反射率計(jì)算,同時(shí)消除背景光譜干擾,確保獲得純凈的目標(biāo)物體光譜信息,這一過程通常在數(shù)據(jù)采集時(shí)同步完成。

隨后從處理后的高光譜數(shù)據(jù)中提取關(guān)鍵特征,包括光譜反射率、吸收峰位置及光譜形態(tài)特征等,并運(yùn)用主成分分析等降維方法篩選出具有代表性的特征參數(shù)。

在分類識別環(huán)節(jié),利用不同物質(zhì)對特定波段反射率的差異特性,分別采用監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)兩種方法:前者通過標(biāo)記數(shù)據(jù)集訓(xùn)練光譜角制圖或卷積神經(jīng)網(wǎng)絡(luò)等分類模型,后者則運(yùn)用K均值或?qū)哟尉垲惖人惴▽?shí)現(xiàn)數(shù)據(jù)自動(dòng)分類。

最終將分析結(jié)果以偽彩色圖像形式直觀呈現(xiàn),展示不同物質(zhì)的空間分布情況,并基于光譜特征開展定量和定性分析,計(jì)算得出各類物質(zhì)的濃度或類別參數(shù)。

Hyperspectral imaging not only captures photos but also records the spectral "fingerprint" of each pixel.

During the experiment, two hyperspectral cameras (400–1000 nm visible-NIR and 900–1700 nm SWIR) were used to collect spectral data from the six samples.

In the preprocessing stage, raw data underwent noise reduction and reflectance calibration via specialized software, while background interference was eliminated to ensure clean spectral data. This process was synchronized with data acquisition.

Key features were then extracted from the processed data, including spectral reflectance, absorption peak positions, and spectral shape characteristics. Dimensionality reduction methods like PCA were applied to identify the most representative parameters.

For classification, both supervised and unsupervised learning were employed:

Supervised methods (e.g., spectral angle mapper or CNN) used labeled datasets to train models.

Unsupervised methods (e.g., K-means or hierarchical clustering) automated data grouping based on reflectance differences in specific bands.

Results were visualized as pseudo-color images to display spatial distributions of materials, followed by quantitative/qualitative analysis to calculate concentrations or categories.


「光譜曲線 / Spectral Curves」

在400-1700nm波長范圍內(nèi),六種不同辣度的火鍋底料樣本在a面和b面的反射率曲線呈現(xiàn)出相似的光譜波形,但反射率數(shù)值隨辣度變化而存在顯著差異。具體表現(xiàn)為辣度越高,反射率越低,這一趨勢在a面和b面均保持一致。

值得注意的是,在b面的860-930nm波段范圍內(nèi),反射率曲線對辣度的區(qū)分效果尤為明顯,能夠更清晰地反映辣度差異。

Within 400–1700 nm, reflectance curves of the six samples (A-side and B-side) showed similar waveforms but significant reflectance variations correlated with spiciness. Higher heat levels consistently exhibited lower reflectance on both sides.

Notably, the 860–930 nm range on the B-side provided the clearest distinction between heat levels.

火鍋6.png

a面反射率(400-1000nm)

火鍋7.png

a面反射率(900-1700nm)

火鍋8.png

b面反射率(400-1000nm)

火鍋9.png

b面反射率(900-1700nm)


「建立CNN模型 / CNN Modeling」

為了進(jìn)一步分析辣度分類的可行性,研究采用卷積神經(jīng)網(wǎng)絡(luò)(CNN)對高光譜數(shù)據(jù)進(jìn)行建模。

To further assess classification feasibility, a CNN model was applied to hyperspectral data.


建立CNN模型(400-1000nm  a/b面) / CNN Model (400–1000 nm, A/B-sides)

在400-1000nm波段的a面數(shù)據(jù)分類中,模型整體準(zhǔn)確率介于75%-85%之間,其中辣度45°和75°的分類效果較好,而辣度12°和52°由于數(shù)據(jù)采集時(shí)受容器遮擋影響,部分區(qū)域出現(xiàn)誤判。此外,辣度36°因樣品表面凹陷導(dǎo)致數(shù)據(jù)質(zhì)量下降,而辣度65°的部分區(qū)域被錯(cuò)誤歸類為75°。

相比之下,b面的分類表現(xiàn)更為穩(wěn)定,整體準(zhǔn)確率約為85%,僅辣度45°的少量區(qū)域被誤判為36°。

A-side: Overall accuracy ranged 75%–85%. Samples at 45° and 75° were classified best, while 12° and 52° suffered partial misclassification due to container obstruction during imaging. The 36° sample had uneven surfaces, and 65° was occasionally mislabeled as 75°.

B-side: Performance was more stable (~85% accuracy), with only minor misclassification (45° vs. 36°).

火鍋11.jpg

a面結(jié)果 (400-1000nm)

火鍋12.png

a面結(jié)果 (400-1000nm)


建立CNN模型(900-1700nm  a/b面) / CNN Model (900–1700 nm, A/B-sides)

在900-1700nm波段的分析中,a面數(shù)據(jù)的分類準(zhǔn)確率在70%-80%之間,其中辣度12°和36°因表面凹凸不平或凹陷導(dǎo)致數(shù)據(jù)質(zhì)量較差,誤判率較高,而辣度45°、52°、65°和75°的分類效果較好。

相比之下,b面數(shù)據(jù)由于表面更平滑,且無干辣椒等固體遮擋,分類表現(xiàn)顯著優(yōu)于a面,整體準(zhǔn)確率超過90%,僅有少量區(qū)域出現(xiàn)誤判。

這一結(jié)果表明,900-1700nm波段可能更適合用于火鍋底料辣度的精準(zhǔn)檢測,尤其是結(jié)合b面數(shù)據(jù)時(shí),分類效果更佳。

A-side: Accuracy was 70%–80%. Samples at 12° and 36° showed higher misclassification due to surface irregularities, while 45°–75° performed better.

B-side: Superior accuracy (>90%) was achieved thanks to smoother surfaces and absence of solid obstructions (e.g., dried chilies).

These results suggest that 900–1700 nm SWIR, especially with B-side data, is more suitable for precise heat-level detection.

火鍋13.png

a面結(jié)果 (900-1700nm)

火鍋14.png

b面結(jié)果 (900-1700nm)


「總結(jié) / Conclusion」

基于高光譜視覺技術(shù)的研究表明,通過對六種不同辣度的火鍋底料樣品進(jìn)行高光譜數(shù)據(jù)采集,并經(jīng)過數(shù)據(jù)預(yù)處理和算法分析,能夠有效區(qū)分樣品的辣度等級。

實(shí)驗(yàn)數(shù)據(jù)顯示,雖然樣品a面和b面的光譜曲線均能反映辣度變化,但b面的區(qū)分效果更為顯著。在光譜波段選擇方面,相比400-1000nm的可見近紅外譜段,900-1700nm的短波紅外譜段展現(xiàn)出更高的識別準(zhǔn)確率和檢測精度。

為進(jìn)一步提升研究結(jié)果的可靠性,后續(xù)工作將重點(diǎn)擴(kuò)大樣本數(shù)據(jù)量,通過增加樣本多樣性來持續(xù)優(yōu)化識別準(zhǔn)確率。

Hyperspectral imaging effectively differentiated the six heat levels of hot pot base samples after data preprocessing and algorithmic analysis.

While both A-side and B-side spectral curves reflected spiciness trends, the B-side provided clearer distinctions. Compared to 400–1000 nm visible-NIR, the 900–1700 nm SWIR band demonstrated higher accuracy and precision.

To enhance reliability, future work will expand sample diversity and dataset size for further optimization.


免責(zé)聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618
主站蜘蛛池模板: 石狮市| 蕉岭县| 宜州市| 光山县| 海安县| 麦盖提县| 琼海市| 永仁县| 兴业县| 祁门县| 迁安市| 当涂县| 噶尔县| 乌拉特前旗| 郴州市| 嘉义市| 赞皇县| 双城市| 郓城县| 玛沁县| 色达县| 宁陕县| 攀枝花市| 克拉玛依市| 阿合奇县| 蓬莱市| 平顺县| 普格县| 陵水| 二连浩特市| 湘西| 乡宁县| 通许县| 淅川县| 婺源县| 林西县| 珠海市| 新竹市| 凌海市| 南京市| 信阳市|