性做久久久久久坡多野结衣-性做久久久久久久久浪潮-性欲影院-性影院-国产精品线路一线路二-国产精品兄妹在线观看麻豆

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>技術文章>測量應用案例-20191210

技術文章

測量應用案例-20191210

閱讀:179          發布時間:2019-12-24

文獻名:Different dynamic accumulation and toxicity of ZnO nanoparticles and ionic Zn in the soil sentinel organism Enchytraeus crypticus 

 

作者Erkai Hea, Hao Qiubc, Xueyin Huanga, Cornelis A.M.Van Gesteld, Rongliang Qiuae 

aSchool of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China

bSchool of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

cShanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China

dDepartment of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands

eGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China

 

摘要:There is still no consensus over the specific effects of metal-based nanoparticles when compared with the conventional metal salts. Here, the accumulation and toxicity of ZnO-NPs and ZnCl2 in Enchytraeus crypticus over time (1–14?d) were investigated using a sand-solution exposure medium and applying a toxicokinetics and toxicodynamics approach. For both Zn forms, body Zn concentration in the organisms was dependent on both the exposure concentration and exposure time, with equilibrium being reached after 714 days of exposure. Generally, the uptake and elimination rate constants (Ku and Ke1) were smaller for ZnO-NPs (5.74–12.6?mg?kg−1d−1 and 0.17–0.39 d−1) than for ZnCl2 (8.32–40.1?mg?kg−1d−1 and 0.31–2.05 d−1), suggesting that ionic Zn was more accessible for E. crypticus than nanoparticulate Zn. Based on external exposure concentrations, LC50s for ZnO-NPs and ZnCl2 decreased with time from 123 to 67 Zn mg L−1 and from 86 to 62 Zn mg L−1, reaching an almost similar ultimate value within 14?d. LC50s based on body Zn concentrations were almost constant over time (except for 1?d) for both ZnO-NPs and ZnCl2, with overall LC50body of Zn being 1720 and 1306?mg?kg−1 dry body weight, respectively. Body Zn concentration, which considers all available pathways, was a good predictor of dynamic toxicity of ZnCl2, but not for ZnO-NPs. This may be attributed to the specific internal distribution and detoxification mechanisms of ZnO-NPs. The particles from ZnO-NPs dominated the accumulation (>75%) and toxicity (100%). Our results suggest that dynamic aspects should be taken into account when assessing and comparing NPs and metals uptake and consequent patterns of toxicity.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
主站蜘蛛池模板: 开江县| 阳信县| 墨竹工卡县| 湛江市| 静乐县| 多伦县| 宁都县| 平乡县| 马龙县| 临潭县| 历史| 江华| 乐东| 武强县| 阜阳市| 静海县| 南充市| 晋中市| 百色市| 岚皋县| 尼勒克县| 钟山县| 辽阳县| 临安市| 淮南市| 宁蒗| 平南县| 济南市| 邢台县| 旅游| 赞皇县| 南和县| 汪清县| 黔江区| 洛扎县| 绥江县| 闻喜县| 神农架林区| 连江县| 惠安县| 衡南县|