性做久久久久久坡多野结衣-性做久久久久久久久浪潮-性欲影院-性影院-国产精品线路一线路二-国产精品兄妹在线观看麻豆

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>技術文章>測量應用案例-20190905

技術文章

測量應用案例-20190905

閱讀:224          發布時間:2019-9-18

文獻名: Concurrent transport and removal of nitrate, phosphate and pesticides in low-cost metal- and carbon-based materials

 

作者: Dongli Tonga,b, Jie Zhuanga,c,d, Jaehoon Leec, John Buchananc, Xijuan Chena

aKey Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China

bUniversity of Chinese Academy of Sciences, Beijing, 100039, China

cDepartment of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, USA

dCenter for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA

 

摘要:Low-cost magnesium- and/or carbon-based materials have a great potential to remove soluble contaminants from surface and ground water. This study examined mechanisms that control the removal of nitrate, phosphate and pesticides (tricyclazole, malathion and isoprothiolane) during their transport through calcined magnesia (MgO) and corn stalk biochar. Various miscible column breakthrough experiments were carried out and morphology and crystallographic structures of reactive materials were examined. Approximately 96% (78,950?mg-NO3-/kg) and 48% (27,455?mg-NO3-/kg) of nitrate were removed from biochar and MgO columns, respectively. Chemical adsorption dominated nitrate removal during early phase (i.e., <11?PVs for biochar and <100?PVs for MgO, respectively), and microbial denitrification dominated during the following phase. 92% of the applied phosphate (6168?mg-PO43-/kg) was removed in MgO column, while much less in biochar column (4%, 347?mg-PO43-/kg). Mineral surface analyses confirmed that electrostatic attraction, ligand exchange, and chemical precipitation were responsible for phosphate removal. For the three pesticides, biochar exhibited larger removal capacity (1260–2778?mg/kg) than MgO (28–2193?mg/kg) due to the functional groups on biochar. The removal of pesticides based on their physico-chemical properties. Malathion had highest removal rate (98–100%), attributing to chemical sorption and bio-degradation, followed by isoprothiolane (47–79%) and tricyclazole (6–64%).

 

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
主站蜘蛛池模板: 新乡县| 呼和浩特市| 弋阳县| 松原市| 南皮县| 从江县| 金阳县| 台东县| 丰宁| 饶河县| 临海市| 怀集县| 恩施市| 平邑县| 宣城市| 天气| 五指山市| 垦利县| 昌黎县| 南丰县| 武功县| 阿巴嘎旗| 青浦区| 繁昌县| 尼玛县| 沿河| 噶尔县| 九龙坡区| 金川县| 扎赉特旗| 赫章县| 泰兴市| 雅江县| 勃利县| 宁陵县| 瓦房店市| 红河县| 当雄县| 搜索| 普陀区| 敖汉旗|