性做久久久久久坡多野结衣-性做久久久久久久久浪潮-性欲影院-性影院-国产精品线路一线路二-国产精品兄妹在线观看麻豆

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>技術文章>測量應用案例-20190905

技術文章

測量應用案例-20190905

閱讀:224          發布時間:2019-9-18

文獻名: Concurrent transport and removal of nitrate, phosphate and pesticides in low-cost metal- and carbon-based materials

 

作者: Dongli Tonga,b, Jie Zhuanga,c,d, Jaehoon Leec, John Buchananc, Xijuan Chena

aKey Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China

bUniversity of Chinese Academy of Sciences, Beijing, 100039, China

cDepartment of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, USA

dCenter for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA

 

摘要:Low-cost magnesium- and/or carbon-based materials have a great potential to remove soluble contaminants from surface and ground water. This study examined mechanisms that control the removal of nitrate, phosphate and pesticides (tricyclazole, malathion and isoprothiolane) during their transport through calcined magnesia (MgO) and corn stalk biochar. Various miscible column breakthrough experiments were carried out and morphology and crystallographic structures of reactive materials were examined. Approximately 96% (78,950?mg-NO3-/kg) and 48% (27,455?mg-NO3-/kg) of nitrate were removed from biochar and MgO columns, respectively. Chemical adsorption dominated nitrate removal during early phase (i.e., <11?PVs for biochar and <100?PVs for MgO, respectively), and microbial denitrification dominated during the following phase. 92% of the applied phosphate (6168?mg-PO43-/kg) was removed in MgO column, while much less in biochar column (4%, 347?mg-PO43-/kg). Mineral surface analyses confirmed that electrostatic attraction, ligand exchange, and chemical precipitation were responsible for phosphate removal. For the three pesticides, biochar exhibited larger removal capacity (1260–2778?mg/kg) than MgO (28–2193?mg/kg) due to the functional groups on biochar. The removal of pesticides based on their physico-chemical properties. Malathion had highest removal rate (98–100%), attributing to chemical sorption and bio-degradation, followed by isoprothiolane (47–79%) and tricyclazole (6–64%).

 

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
主站蜘蛛池模板: 屏南县| 卢湾区| 乐陵市| 华阴市| 瑞丽市| 黎城县| 阿勒泰市| 广州市| 桃源县| 沙坪坝区| 秦安县| 牙克石市| 茌平县| 宝坻区| 高尔夫| 双江| 吉安市| 胶南市| 宁明县| 资兴市| 颍上县| 隆尧县| 尖扎县| 东源县| 伊金霍洛旗| 邛崃市| 怀安县| 东方市| 阿勒泰市| 封丘县| 垦利县| 伊春市| 兰溪市| 镇巴县| 清丰县| 汉中市| 蒙城县| 铜陵市| 罗甸县| 合山市| 芦山县|