性做久久久久久坡多野结衣-性做久久久久久久久浪潮-性欲影院-性影院-国产精品线路一线路二-国产精品兄妹在线观看麻豆

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊

當(dāng)前位置:
美國布魯克海文儀器公司>技術(shù)文章>Nanobrook Omni測量應(yīng)用案例-65

技術(shù)文章

Nanobrook Omni測量應(yīng)用案例-65

閱讀:285          發(fā)布時間:2018-12-12
 文獻(xiàn)名:Spontaneous Imbibition Investigation of Self-Dispersing Silica Nanofluids for Enhanced Oil Recovery in Low-Permeability Cores 

 

作者:Caili Dai, Xinke Wang, Yuyang Li, Wenjiao Lv, Chenwei Zou, Mingwei Gao, and Mingwei Zhao

State Key Laboratory of Heavy Oil Processing, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, Peoples Republic of China 

 

 

摘要:A new kind of self-dispersing silica nanoparticle was prepared and used to enhance oil recovery in spontaneous imbibition tests of low-permeability cores. To avoid the aggregation of silica nanoparticles, a new kind of silica nanoparticle was prepared through the surface modification with vinyltriethoxysilane and 2-mercaptobenzimidazole as modified agents. Transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and ζ potential measurements were employed to characterize the modified silica nanoparticles. Dispersing experiments indicated that modified silica nanoparticles had superior dispersity and stability in alkaline water. To evaluate the performance of silica nanofluids for enhanced oil recovery compared to pH 10 alkaline water and 5 wt % NaCl solution, spontaneous imbibition tests in sandstone cores were conducted. The results indicated that silica nanofluids can evidently improve oil recovery. To investigate the mechanism of nanoparticles for enhanced oil recovery, the contact angle and interfacial tension were measured. The results showed that the adsorption of silica nanoparticles can change the surface wettability from oil-wet to water-wet and silica nanoparticles showed a little influence on oil/water interfacial tension. In addition, the change of the oil droplet shape on the hydrophobic surface was monitored through dynamic contact angle measurement. It was shown that silica nanoparticles can gradually detach the oil droplet from the hydrophobic surface, which is consistent with the structural disjoining pressure mechanism.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復(fù)您~

對比框

產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機(jī)商鋪
010-62081908
在線留言
主站蜘蛛池模板: 永和县| 宁都县| 逊克县| 济南市| 文成县| 龙井市| 越西县| 广昌县| 密云县| 平武县| 石屏县| 江安县| 蓝山县| 姚安县| 菏泽市| 普洱| 闽清县| 外汇| 馆陶县| 湘西| 铅山县| 重庆市| 威宁| 于田县| 双流县| 驻马店市| 青阳县| 两当县| 庆云县| 昭通市| 三门县| 叙永县| 铜梁县| 甘泉县| 怀柔区| 车致| 桂平市| 鲁山县| 林西县| 循化| 新余市|