性做久久久久久坡多野结衣-性做久久久久久久久浪潮-性欲影院-性影院-国产精品线路一线路二-国产精品兄妹在线观看麻豆

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>技術文章>Role of solution chemistry in the retention and release of graphene oxide nanomaterials in uncoated

技術文章

Role of solution chemistry in the retention and release of graphene oxide nanomaterials in uncoated

閱讀:303          發布時間:2018-1-30

作者 Dengjun Wanga,b. Chongyang Shenc. Yan Jind. Chunming Sue. Lingyang Chua. Dongmei Zhoua.

a

Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

b

University of Chinese Academy of Sciences, Beijing 100049, China

c

Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China

d

Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA

e

Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, OK 74820, USA

 

摘要:Understanding the fate and transport including remobilization of graphene oxide nanomaterials (GONMs) in the subsurface would enable us to expedite their benign use and evaluate their environmental impacts and health risks. In this study, the retention and release of GONMs were investigated in water-saturated columns packed with uncoated sand (Un-S) or iron oxide-coated sand (FeS) at environmentally relevant solution chemistries (1–100 mM KCl and 0.1–10 mM CaCl2 at pH 7 and 11). Our results showed that increasing ionic strength (IS) inhibited GONMs' transport, and the impact of K+ was less than Ca2 +. The positively charged iron oxide coating on sand surfaces immobilized the negatively charged GONMs (pH 7) in the primary minimum, yielding hyperexponential retention profiles particularly in Ca2 +. A stepwise decrease in pore-water IS caused detachment of previously retained GONMs. The mass of GONMs released during each detachment step correlated positively with the difference in secondary minimum depth (ΔΦmin2) at each IS, indicating that the released GONMs were retained in the secondary minimum. While most retained GONMs were re-entrained upon lowering pore-water IS in Un-S, decreasing IS only released limited GONMs in FeS, which were captured in the primary minimum. Introducing 1 mM NaOH (pH 11) released most retained GONMs in FeS; and average hydrodynamic diameters of the detached GONMs upon injecting NaOH were significantly smaller than those of GONMs in the influent and retentate, suggesting that NaOH induced GONMs disaggregation. Our findings advance current knowledge to better predict NMs' fate and transport under various solution chemistries such as during rainfall events or in the mixing zones between sea water and fresh water where transient IS changes drastically.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
主站蜘蛛池模板: 临海市| 咸丰县| 泊头市| 正镶白旗| 民丰县| 旅游| 沁源县| 靖安县| 武隆县| 平阴县| 托克托县| 青河县| 南宁市| 谷城县| 久治县| 唐海县| 阿图什市| 会泽县| 宜丰县| 玛纳斯县| 缙云县| 诸暨市| 通州市| 民权县| 锡林浩特市| 昌平区| 固安县| 东平县| 巫溪县| 修水县| 双峰县| 武陟县| 石门县| 淳化县| 姜堰市| 日喀则市| 故城县| 苍南县| 武川县| 黄浦区| 台中市|