產地類別 | 進口 | 應用領域 | 電子/電池 |
---|---|---|---|
產地 | 德國 | 品牌 | 西門子 |
熱電偶測量溫度時要求冷端的溫度保持不變,這樣產生的熱電勢大小才與測量溫度呈一定的比例關系。若測量時冷端的環境溫度變化,將嚴重影響測量的準確性,所以需要對冷端溫度變化造成的影響采取一定補償的措施。
由于熱電偶的材料一般都比較貴重(特別是采用貴金屬時),而測溫點到控制儀表的距離都很遠,為了節省熱電偶材料,降低成本可以用補償導線延伸冷端到溫度比較穩定的控制室內,但補
![]() |
參考價 | 面議 |
更新時間:2022-02-24 11:41:25瀏覽次數:320
聯系我們時請說明是化工儀器網上看到的信息,謝謝!
6ES7960-1AA04-5AA0
作為SIMATIC過程控制器系列的一部分,6ES7960-1AA04-5AA0西門子光纖連接電纜,S7- 400被設計用于制造和過程自動化領域的系統解決方案。這個過程控制器是數據密集型任務,特別是典型過程工業的理想選擇。高處理速度和高確定性的響應時間能夠確保對制造業高速加工中的短機器循環周期。
兩種總線形式的創新型冗余控制器
說明
SIMATICS7-400 PNH系統可以根據具體應用需求量身定制:性能可擴展、的冗余度可靈活組態,安全功能易于集成。集成PROFINET接口,可冗余連接I/O設備,或者通過PROFIBUS連接I/O設備,實現工廠級通信。無論何種應用,使用SIMATIC S7-400 PNH,均可在熟悉的STEP7 工程環境中,進行便捷而有效的編程和組態。
應用
■ 避免控制器故障引起的停機。主要用于生產、能源、供水系統、機場助航照明、編組站系統等領域。
■ 避免因工廠故障造成數據丟失而導致的高昂重啟成本。主要用于行李處理、高架倉庫、跟蹤和追溯等領域。
■ 在工廠或機器停機時保護工廠、工件和材料。主要用于爐子、半導體、船舶等領域。
■ 無監督和維修人員亦能保障正常運行。主要用于污水處理廠、隧道、船閘、樓宇系統等領域。
效益
簡單、高效的工程組態
與在標準系統中一樣,SIMATIC S7-400H 可以使用所有 STEP 7 編程語言進行編程。可以很容易的把程序從標準系統遷移到冗余系統中,反之亦然。當加載程序時,它會自動傳送到兩個冗余控制器中。使用 STEP 7,可以對特定冗余功能和配置進行參數設置。
出色的診斷和模塊更換優勢
■ 利用集成的自我診斷功能,系統可以提前檢測故障和發送信號,避免故障對生產過程產生影響。這樣可以有針對性地替換故障組件,加快維修進程。
■ 可以在系統運行過程中對所有組件進行熱插拔。更換一個 CPU 后,當前的所有程序和數據可以自動重新裝載。
■ 即使在系統運行過程中,也可以修改程序(例如,程序塊的修改和重新裝載),更改配置(例如,增加或刪減 DP從站或模塊)以及改變 CPU 的內存分配。
設計和功能
根據統計數字表明,所有自動化組件(無論是機械式、機電式,還是電子式)都會出現故障。因此,工廠維護和工廠改造也就必不缺少。在實際應用中,期待的可用性是不現實的。
通過西門子 SIMATIC S7-400H,能夠大限度地降低生產故障機率,大化生產率。
SIMATIC S7-400H 具有以下功能:
■ 出現故障時,能夠無擾切換
■ 集成故障檢測功能;提前檢測故障,避免影響生產過程
■ 在線維護,即可在工廠運行期間,更換故障組件
■ 組態更改,即可在工廠運行期間,進行工廠擴容
■ 自動事件同步
■ 高可用性通信
■ 冗余連接I/O 設備
要求嚴格任務用的控制器
說明
有一系列從入門級CPU直到高性能CPU,用于配置控制器。西門子光纖連接電纜,所有CPU控制大量結構;多個CPU可以在一個多值計算配置中一起工作以提高性能。由于CPU的高處理速度和確定性的響應時間,可縮短機器的循環周期。
不同的CPU具有不同性能,例如,工作存儲器,地址范圍,連接數量和執行時間。十款款標準的CPU,集成PROFIBUS、PROFINET 總線接口。
由于采用各種級別的CPU,S7-400可以靈活擴展升級;I/O能力幾乎是無限的。
強大的CPU允許集成新的功能,無需額外硬件投資,例如處理質量數據,用戶友好的診斷,到更高層次的MES解決方案或通過總線系統的高速通訊。
可以以模塊化的方式構建S7 - 400,有各種用于集中配置和分布式結構的模塊,以實現處理備件方面的低成本。
在操作過程中可以修改S7- 400 的分布式I/O配置(在運行中配置)。另外在工作時還可以刪除和插入信號模塊(熱插拔)。這使得很容易擴展系統或出現故障時替換模塊。
項目的完整數據存儲包括CPU上的符號和注釋,簡化了服務和維護過程。
可以將安全技術和標準自動化集成到一個單一的S7- 400控制器,可以通過S7- 400的冗余結構增加設備的可用性。
S7- 400的許多器件也可用于外部環境條件SIPLUS版本,例如:擴展溫度范圍(-25+60°C)和在惡劣環境/冷凝條件下使用。
S7- 400的高速背板總線確保集中式I/ O模塊的高速通訊。
設計和功能
模塊化
S7 - 400的一個重要特點是它的模塊化。S7- 400的高速通訊背板總線和允許直接插入CPU集成的DP接口,允許多條通訊線路的高性能運行。例如,把一根總線用于HMI通訊和編程任務,一根總線用于高性能運動控制,一根總線用于普通I / O現場總線通訊。
此外,也可以實現另外連接到MES-/ERP系統或通過SIMATIC IT連接到互聯網的需要。根據任務情況,可對S7 – 400進行集中擴展或分布式配置。附加設備和接口模塊也可集中用于此目的。在CPU中集成的PROFIBUS或PROFINET接口上也可實現分布式擴展。如果需要,也可以使用通訊處理器(CP)。
設計
設計一個S7 - 400系統基本上包括機架,電源,和中央處理單元。它可以以一個模塊化的方式安裝和擴展。所有的模塊都可以自由地放置在左側插入的電源旁邊。S7- 400具有無風扇的堅固設計。信號模塊可以熱插拔。一個多層面的模塊范圍可用于中央擴展以及具有ET200的分布式拓撲結構的簡單配置。
在集中式擴展中,額外安裝機架直接連接到中央控制器。
除了標準的安裝機架,也提供9槽和18槽鋁合金安裝機架。這些鋁機架可以很高地耐受不利環境條件,緊固耐用,重量輕25%左右。
多值計算
多值計算,也就是在一個S7- 400中央控制器中的幾個CPU的同時操作,為用戶提供不同的益處:
可通過多值計算共享的S7 - 400的整體性能。例如,在技術復雜的任務中,如開環控制,可以將計算機或通訊分割和分配給不同的CPU每個CPU分配給自己的,用于此目的本地輸入/輸出。
有些任務也可以從每個多值計算方式中斷開,一個CPU處理關鍵時間的處理任務,另一個處理非關鍵時間的任務。
在多值計算操作中,所有的CPU的運行行為像一個CPU,也就是說,當一個CPU進入STOP狀態,其他的也停止。幾個CPU的動作可以通過同步指令選擇性地協調調用。此外,CPU之間的數據交換通過高速的全局數據通訊機制。
數據/程序存儲器
從精細分級的各種CPU中選擇合適的CPU取決于集成工作存儲區的大小。集成裝載存儲器(RAM)足以滿足中小型企業方案。對于大型程序,通過插入RAM或FEPROM存儲卡增大裝載內存(64 KB到64 MB)。
特殊功能
S7- 400 CPU有一些非常有用的特殊功能:
從工程工作站通過網絡更新固件實現更簡單和快速的升級
通過一個系統功能實現額外的寫保護(例如沒有從PC器件下載到CPU)
通過讀取存儲卡的序列號獲得保護,因此,保證了程序只與特定的存儲卡一起運行
集成的路由功能允許在不同總線系統和網絡訪問數據記錄,例如控制級PC可以通過S7 -400控制器與連接在PROFINET或者PROFIBUS接口上的現場設備進行通訊。
2.3 監控通信結果
下載S7-1200和S7-300中的所有組態及程序,監控通信結果,如圖10、圖11所示。
在S7-1200 CPU中向DB3中寫入數據:“11”、“22”、“33”,則在S7-300中的DB2塊收到數據也為“11”、“22”、“33”。
在S7-300 CPU中,將“2#1111_1111”寫入IB0,則在S7-1200 CPU中QB0中收到的數據也為“2#1111_1111”。
圖10 S7-1200監控表
圖11 S7-300 變量表
3. TCP 通信
使用TCP 協議通信,除了連接參數的定義不同,通信雙方的其它組態及編程與前面的ISO on TCP 協議通信*相同。
S7-1200 CPU中,使用 TCP 協議與S7-300通信時,PLC_1的連接參數,如圖12所示。通信伙伴 S7-300 的連接參數,如圖13所示。
圖12 S7-1200 的TCP連接參數的配置
圖13 S7-300 的TCP連接參數的配置
1.1 熱電偶的工作原理
熱電偶和熱電阻一樣,都是用來測量溫度的。
熱電偶是將兩種不同金屬或合金金屬焊接起來,構成一個閉合回路,利用溫差電勢原理來測量溫度的,當熱電偶兩種金屬的兩端有溫度差,回路就會產生熱電動勢,溫差越大,熱電動勢越大,利用測量熱電動勢這個原理來測量溫度。
結構示意圖如下:
圖1 熱電偶測量結構示意圖
注意:如上圖所示,熱電偶是有正負極性的,所以需要確保這些導線連接到正確的極性,否則將會造成明顯的測量誤差
為了保證熱電偶可靠、穩定地工作,安裝要求如下:
① 組成熱電偶的兩個熱電極的焊接必須牢固;
② 兩個熱電極彼此之間應很好地絕緣,以防短路;
③ 補償導線與熱電偶自由端的連接要方便可靠;
④ 保護套管應能保證熱電極與有害介質充分隔離;
⑤ 熱電偶對于外界的干擾比較敏感,因此安裝還需要考慮屏蔽的問題。
1.2 熱電偶與熱電阻的區別
屬性 | 熱電阻 | 熱電偶 |
信號的性質 | 電阻信號 | 電壓信號 |
測量范圍 | 低溫檢測 | 高溫檢測 |
材料 | 一種金屬材料(溫度敏感變化的金屬材料) | 雙金屬材料在(兩種不同的金屬,由于溫度的變化,在兩個不同金屬的兩端產生電動勢差) |
測量原理 | 電阻隨溫度變化的性質來測量 | 基于熱電效應來測量溫度 |
補償方式 | 3線制和4線制接線 | 內部補償和外部補償 |
電纜接點要求 | 電阻直接接入可以更精確的避免線路的的損耗 | 要通過補償導線直接接入到模板;或補償導線接到參比接點,然后用銅制導線接到模板 |
表1 熱電偶與熱電阻的比較
2. 熱電偶的類型和可用模板
2.1熱電偶類型
根據使用材料的不同,分不同類型的熱電偶,以分度號區分,分度號代表溫度范圍,且代表每種分度號的熱電偶具體多少溫度輸出多少毫伏的電壓,熱電偶的分度號有主要有以下幾種。
分度號 | 溫度范圍(℃) | 兩種金屬材料 |
B型 | 0~1820 | 鉑銠—鉑銠 |
C型 | 0~2315 | 鎢3稀土—鎢26 稀土 |
E型 | -270~1000 | 鎳鉻—銅鎳 |
J型 | -210~1200 | 鐵—銅鎳 |
K型 | -270~1372 | 鎳鉻—鎳硅 |
L型 | -200~900 | 鐵—銅鎳 |
N型 | -270~1300 | 鎳鉻硅—鎳硅 |
R型 | -50~1769 | 鉑銠—鉑 |
S型 | -50~1769 | 鉑銠—鉑 |
T型 | -270~400 | 銅—銅鎳 |
U型 | -270~600 | 銅—銅鎳 |
表2 分度號對照表
2.2可用的模板
CPU類型 | 模板類型 | 支持熱電偶類型 |
S7-300 | 6ES7 331-7KF02-0AB0(8點) | E,J,K,L,N |
6ES7 331-7KB02-0AB0(2點) | E,J,K,L,N | |
6ES7 331-7PF11-0AB0(8點) | B,C,E,J,K,L,N,R,S,T,U | |
S7-400 | 6ES7 431-1KF10-0AB0(8點) | B,E,J,K,L,N,R,S,T,U |
6ES7 431-7QH00-0AB0(16點) | B,E,J,K,L,N,R,S,T,U | |
6ES7 431-7KF00-0AB0(8點) | B,E,J,K,L,N,R,S,T,U |
表3 S7 300/400 支持熱電偶的模板及對應熱電偶類型
3. 熱電偶的補償接線
3.1 補償方式
熱電偶測量溫度時要求冷端的溫度保持不變,這樣產生的熱電勢大小才與測量溫度呈一定的比例關系。若測量時冷端的環境溫度變化,將嚴重影響測量的準確性,所以需要對冷端溫度變化造成的影響采取一定補償的措施。
由于熱電偶的材料一般都比較貴重(特別是采用貴金屬時),而測溫點到控制儀表的距離都很遠,為了節省熱電偶材料,降低成本可以用補償導線延伸冷端到溫度比較穩定的控制室內,但補償導線的材質要和熱電偶的導線材質相同。熱電偶補償導線的作用只起延伸熱電極,使熱電偶的冷端移動到控制室的儀表端子上,它本身并不能消除冷端溫度變化對測溫的影響,不起補償作用。因此,還需采用其他修正方法來補償冷端溫度變化造成的影響,補償方式見下表。
溫度補償方式 | 說 明 | 接 線 | |
內部補償 | 使用模板的內部溫度為參比接點進行補償,再由模板進行處理。 | 直接用補償導線連接熱電偶到模擬量模板輸入端。 | |
外部補償 | 補償盒 | 使用補償盒采集并補償參比接點溫度,不需要模板進行處理。 | 可以使用銅質導線連接參比接點和模擬量模板輸入端。 |
熱電阻 | 使用熱電阻采集參比接點溫度,再由模板進行處理。 | ||
如果參比接點溫度恒定可以不要熱電阻參考 |
表4 各類補償方式
3.2各補償方式接線
3.2.1內部補償
內部補償是在輸入模板的端子上建立參比接點,所以需要將熱電偶直接連接到模板的輸入端,或通過補償導線間接的連接到輸入端。每個通道組必須接相同類型的熱電偶,連接示意圖如下。
CPU類型 | 支持內部補償模板類型 | 可連接熱電偶個數 |
S7-300 | 6ES7 331-7KF02-0AB0 | 多8個(4種類型,同通道組必須相同) |
6ES7 331-7KB02-0AB0 | 多2個(1種類型,同通道組必須相同) | |
6ES7 331-7PF11-0AB0 | 多8個(8種類型) | |
S7-400 | 6ES7 431-7KF00-0AB0 | 多8個(8種類型) |
表5 支持內部補償的模板及可接熱電偶個數
圖2 內部補償接線
注1:模板6ES7 331-7KF02-0AB0和6ES7 331-7KB02-0AB0需要短接補償端COMP+(10)和Mana(11),其它模板無。
3.2.2 外部補償—補償盒
補償盒方式是通過補償盒獲取熱電偶的參比接點的溫度,但補償盒必須安裝在熱電偶的參比接點處。
補償盒必須單獨供電,電源模塊必須具有充分的噪聲濾波功能,例如使用接地電纜屏蔽。
補償盒包含一個橋接電路,固定參比接點溫度標定,如果實際溫度與補償溫度有偏差,橋接熱敏電阻會發生變化,產生正的或者負的補償電壓疊加到測量電勢差信號上,從而達到補償調節的目的。
補償盒采用參比接點溫度為0℃的補償盒,推薦使用西門子帶集成電源裝置的補償盒,訂貨號如下表。
推薦使用的補償盒 | 訂貨號 | ||
帶有集成電源裝置的參比端,用于導軌安裝 | M72166-V V V V V | ||
輔助電源 | B1 | 230VAC | ![]() |
B2 | 110VAC | ||
B3 | 24VAC | ||
B4 | 24VDC | ||
連接到熱電偶 | 1 | L型 | |
2 | J型 | ||
3 | K型 | ||
4 | S型 | ||
5 | R型 | ||
6 | U型 | ||
7 | T型 | ||
參考溫度 | 00 | 0℃ |
表6 西門子參比接點的補償盒訂貨數據
圖3 S7-300模板支持接線方式
圖3 類型:熱電偶通過補償導線連接到參比接點,再用銅質導線連接參比接點和模板的輸入端子構成回路,同時由一個補償盒對模板連接的所有熱電偶進行公共補償,補償盒的9,8端子連接到模板的補償端COMP+(10)和Mana(11),所以模板的所有通道必須連接同類型的熱電偶。
圖4 S7-400模板支持接線方式
圖4 類型:模板的各個通道單獨連接一個補償盒,補償盒通過熱電偶的補償導線直接連接到模板的輸入端子構成回路,所以模板的每個通道都可以使用模板支持類型的熱電偶,但是每個通道都需要補償盒。
CPU類型 | 支持外部補償盒補償模板類型 | 可連接熱電偶個數 |
S7-300 | 6ES7 331-7KF02-0AB0 | 多8個(同類型) |
6ES7 331-7KB02-0AB0 | 多2個(同類型) | |
S7-400 | 6ES7 431-1KF10-0AB0 | 多8個(類型可不同) |
6ES7 431-7QH00-0AB0 | 多16個(類型可不同) |
表7 支持外部補償盒補償的模板及可接熱電偶個數
3.2.3 外部補償—熱電阻
熱電阻方式是通過外接電阻溫度計獲取熱電偶的參比接點的溫度,再由模板處理然后進行溫度補償,同樣熱電阻必須安裝在熱電偶的參比接點處。
2.3 監控通信結果
下載S7-1200和S7-300中的所有組態及程序,監控通信結果,如圖10、圖11所示。
在S7-1200 CPU中向DB3中寫入數據:“11”、“22”、“33”,則在S7-300中的DB2塊收到數據也為“11”、“22”、“33”。
在S7-300 CPU中,將“2#1111_1111”寫入IB0,則在S7-1200 CPU中QB0中收到的數據也為“2#1111_1111”。
圖10 S7-1200監控表
圖11 S7-300 變量表
3. TCP 通信
使用TCP 協議通信,除了連接參數的定義不同,通信雙方的其它組態及編程與前面的ISO on TCP 協議通信*相同。
S7-1200 CPU中,使用 TCP 協議與S7-300通信時,PLC_1的連接參數,如圖12所示。通信伙伴 S7-300 的連接參數,如圖13所示。
圖12 S7-1200 的TCP連接參數的配置
圖13 S7-300 的TCP連接參數的配置
1.1 熱電偶的工作原理
熱電偶和熱電阻一樣,都是用來測量溫度的。
熱電偶是將兩種不同金屬或合金金屬焊接起來,構成一個閉合回路,利用溫差電勢原理來測量溫度的,當熱電偶兩種金屬的兩端有溫度差,回路就會產生熱電動勢,溫差越大,熱電動勢越大,利用測量熱電動勢這個原理來測量溫度。
結構示意圖如下:
圖1 熱電偶測量結構示意圖
注意:如上圖所示,熱電偶是有正負極性的,所以需要確保這些導線連接到正確的極性,否則將會造成明顯的測量誤差
為了保證熱電偶可靠、穩定地工作,安裝要求如下:
① 組成熱電偶的兩個熱電極的焊接必須牢固;
② 兩個熱電極彼此之間應很好地絕緣,以防短路;
③ 補償導線與熱電偶自由端的連接要方便可靠;
④ 保護套管應能保證熱電極與有害介質充分隔離;
⑤ 熱電偶對于外界的干擾比較敏感,因此安裝還需要考慮屏蔽的問題。
1.2 熱電偶與熱電阻的區別
屬性 | 熱電阻 | 熱電偶 |
信號的性質 | 電阻信號 | 電壓信號 |
測量范圍 | 低溫檢測 | 高溫檢測 |
材料 | 一種金屬材料(溫度敏感變化的金屬材料) | 雙金屬材料在(兩種不同的金屬,由于溫度的變化,在兩個不同金屬的兩端產生電動勢差) |
測量原理 | 電阻隨溫度變化的性質來測量 | 基于熱電效應來測量溫度 |
補償方式 | 3線制和4線制接線 | 內部補償和外部補償 |
電纜接點要求 | 電阻直接接入可以更精確的避免線路的的損耗 | 要通過補償導線直接接入到模板;或補償導線接到參比接點,然后用銅制導線接到模板 |
表1 熱電偶與熱電阻的比較
2. 熱電偶的類型和可用模板
2.1熱電偶類型
根據使用材料的不同,分不同類型的熱電偶,以分度號區分,分度號代表溫度范圍,且代表每種分度號的熱電偶具體多少溫度輸出多少毫伏的電壓,熱電偶的分度號有主要有以下幾種。
分度號 | 溫度范圍(℃) | 兩種金屬材料 |
B型 | 0~1820 | 鉑銠—鉑銠 |
C型 | 0~2315 | 鎢3稀土—鎢26 稀土 |
E型 | -270~1000 | 鎳鉻—銅鎳 |
J型 | -210~1200 | 鐵—銅鎳 |
K型 | -270~1372 | 鎳鉻—鎳硅 |
L型 | -200~900 | 鐵—銅鎳 |
N型 | -270~1300 | 鎳鉻硅—鎳硅 |
R型 | -50~1769 | 鉑銠—鉑 |
S型 | -50~1769 | 鉑銠—鉑 |
T型 | -270~400 | 銅—銅鎳 |
U型 | -270~600 | 銅—銅鎳 |
表2 分度號對照表
2.2可用的模板
CPU類型 | 模板類型 | 支持熱電偶類型 |
S7-300 | 6ES7 331-7KF02-0AB0(8點) | E,J,K,L,N |
6ES7 331-7KB02-0AB0(2點) | E,J,K,L,N | |
6ES7 331-7PF11-0AB0(8點) | B,C,E,J,K,L,N,R,S,T,U | |
S7-400 | 6ES7 431-1KF10-0AB0(8點) | B,E,J,K,L,N,R,S,T,U |
6ES7 431-7QH00-0AB0(16點) | B,E,J,K,L,N,R,S,T,U | |
6ES7 431-7KF00-0AB0(8點) | B,E,J,K,L,N,R,S,T,U |
表3 S7 300/400 支持熱電偶的模板及對應熱電偶類型
3. 熱電偶的補償接線
3.1 補償方式
熱電偶測量溫度時要求冷端的溫度保持不變,這樣產生的熱電勢大小才與測量溫度呈一定的比例關系。若測量時冷端的環境溫度變化,將嚴重影響測量的準確性,所以需要對冷端溫度變化造成的影響采取一定補償的措施。
由于熱電偶的材料一般都比較貴重(特別是采用貴金屬時),而測溫點到控制儀表的距離都很遠,為了節省熱電偶材料,降低成本可以用補償導線延伸冷端到溫度比較穩定的控制室內,但補償導線的材質要和熱電偶的導線材質相同。熱電偶補償導線的作用只起延伸熱電極,使熱電偶的冷端移動到控制室的儀表端子上,它本身并不能消除冷端溫度變化對測溫的影響,不起補償作用。因此,還需采用其他修正方法來補償冷端溫度變化造成的影響,補償方式見下表。
溫度補償方式 | 說 明 | 接 線 | |
內部補償 | 使用模板的內部溫度為參比接點進行補償,再由模板進行處理。 | 直接用補償導線連接熱電偶到模擬量模板輸入端。 | |
外部補償 | 補償盒 | 使用補償盒采集并補償參比接點溫度,不需要模板進行處理。 | 可以使用銅質導線連接參比接點和模擬量模板輸入端。 |
熱電阻 | 使用熱電阻采集參比接點溫度,再由模板進行處理。 | ||
如果參比接點溫度恒定可以不要熱電阻參考 |
表4 各類補償方式
3.2各補償方式接線
3.2.1內部補償
內部補償是在輸入模板的端子上建立參比接點,所以需要將熱電偶直接連接到模板的輸入端,或通過補償導線間接的連接到輸入端。每個通道組必須接相同類型的熱電偶,連接示意圖如下。
CPU類型 | 支持內部補償模板類型 | 可連接熱電偶個數 |
S7-300 | 6ES7 331-7KF02-0AB0 | 多8個(4種類型,同通道組必須相同) |
6ES7 331-7KB02-0AB0 | 多2個(1種類型,同通道組必須相同) | |
6ES7 331-7PF11-0AB0 | 多8個(8種類型) | |
S7-400 | 6ES7 431-7KF00-0AB0 | 多8個(8種類型) |
表5 支持內部補償的模板及可接熱電偶個數
圖2 內部補償接線
注1:模板6ES7 331-7KF02-0AB0和6ES7 331-7KB02-0AB0需要短接補償端COMP+(10)和Mana(11),其它模板無。
3.2.2 外部補償—補償盒
補償盒方式是通過補償盒獲取熱電偶的參比接點的溫度,但補償盒必須安裝在熱電偶的參比接點處。
補償盒必須單獨供電,電源模塊必須具有充分的噪聲濾波功能,例如使用接地電纜屏蔽。
補償盒包含一個橋接電路,固定參比接點溫度標定,如果實際溫度與補償溫度有偏差,橋接熱敏電阻會發生變化,產生正的或者負的補償電壓疊加到測量電勢差信號上,從而達到補償調節的目的。
補償盒采用參比接點溫度為0℃的補償盒,推薦使用西門子帶集成電源裝置的補償盒,訂貨號如下表。
推薦使用的補償盒 | 訂貨號 | ||
帶有集成電源裝置的參比端,用于導軌安裝 | M72166-V V V V V | ||
輔助電源 | B1 | 230VAC | ![]() |
B2 | 110VAC | ||
B3 | 24VAC | ||
B4 | 24VDC | ||
連接到熱電偶 | 1 | L型 | |
2 | J型 | ||
3 | K型 | ||
4 | S型 | ||
5 | R型 | ||
6 | U型 | ||
7 | T型 | ||
參考溫度 | 00 | 0℃ |
表6 西門子參比接點的補償盒訂貨數據
圖3 S7-300模板支持接線方式
圖3 類型:熱電偶通過補償導線連接到參比接點,再用銅質導線連接參比接點和模板的輸入端子構成回路,同時由一個補償盒對模板連接的所有熱電偶進行公共補償,補償盒的9,8端子連接到模板的補償端COMP+(10)和Mana(11),所以模板的所有通道必須連接同類型的熱電偶。
圖4 S7-400模板支持接線方式
圖4 類型:模板的各個通道單獨連接一個補償盒,補償盒通過熱電偶的補償導線直接連接到模板的輸入端子構成回路,所以模板的每個通道都可以使用模板支持類型的熱電偶,但是每個通道都需要補償盒。
CPU類型 | 支持外部補償盒補償模板類型 | 可連接熱電偶個數 |
S7-300 | 6ES7 331-7KF02-0AB0 | 多8個(同類型) |
6ES7 331-7KB02-0AB0 | 多2個(同類型) | |
S7-400 | 6ES7 431-1KF10-0AB0 | 多8個(類型可不同) |
6ES7 431-7QH00-0AB0 | 多16個(類型可不同) |
表7 支持外部補償盒補償的模板及可接熱電偶個數
3.2.3 外部補償—熱電阻
熱電阻方式是通過外接電阻溫度計獲取熱電偶的參比接點的溫度,再由模板處理然后進行溫度補償,同樣熱電阻必須安裝在熱電偶的參比接點處。
6DD1684-0GE0所以提醒大家應當確保固定接線的螺絲應當具備10Nm的力矩旋緊。, 4、插座說明:不同系列的歐姆龍繼電器需要對應的插座底座。若是當的壓力恢復低于壓力控制器所設定的下限值時,那么它又會自動接通電路開始正常工作。奇勝,為了迅速熄滅斷開時的電弧,通常器都滅弧裝置,一般采用半封式縱縫陶土滅弧罩,并配有強磁吹弧回路。族類化合物及氧化性酸和強堿等:,并考慮到因溫度變化發生在產品表面上的凝露。, 5、總的照明配電箱應該設在靠近電源處,分照明配電箱應該設在用電負荷或設備相對集中地區,分照明配電箱與各用電設備的開關箱之間超過30米。然后可以按下ON電源按鈕進行啟動操作,
S7-400 是 SIMATIC 控制器家族中功能強大的 PLC。它可以成功實現全集成自動化 (TIA) 解決方案。S7-400 是一個用于制造業和過程工業系統解決方案的自動化平臺,其主要特點是具有模塊化的結構并擁有性能儲備。